Estimates for Generalized Parabolic Marcinkiewicz Integrals with Rough Kernels on Product Domains

نویسندگان

چکیده

We prove Lp estimates of a class generalized Marcinkiewicz integral operators with mixed homogeneity on product domains. By using these along an extrapolation argument, we obtain the boundedness our under very weak conditions kernel functions. Our results in this paper improve and extend several known both integrals parabolic

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Marcinkiewicz integrals on product spaces

‎In this paper‎, ‎we study the $L^p$ ($1

متن کامل

parabolic marcinkiewicz integrals on product spaces

‎in this paper‎, ‎we study the $l^p$ ($1

متن کامل

Rough Marcinkiewicz Integrals On Product Spaces

In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.

متن کامل

Marcinkiewicz integrals along subvarieties on product domains

Stein proved that ifΩ∈ Lipα(Sn−1), (0<α≤ 1), then μΩ is bounded on Lp for all 1<p ≤ 2 [18]. Since then, the study of the Lp boundedness of μΩ under various conditions on the function Ω has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among others). In particular, Chen et al. in [8] studied the Lp boundedness of μΩ under the following condition on the function Ω which was intro...

متن کامل

Hölder estimates for parabolic operators on domains with rough boundary

In this paper we investigate linear parabolic, second-order boundary value problems with mixed boundary conditions on rough domains. Assuming only boundedness/ellipticity on the coefficient function and very mild conditions on the geometry of the domain – including a very weak compatibility condition between the Dirichlet boundary part and its complement – we prove Hölder continuity of the solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12060596